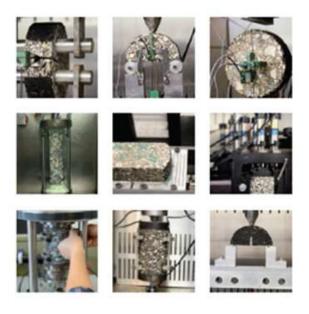
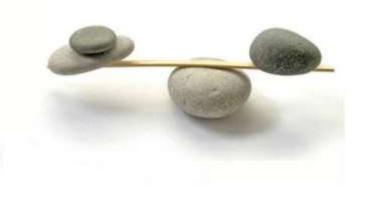
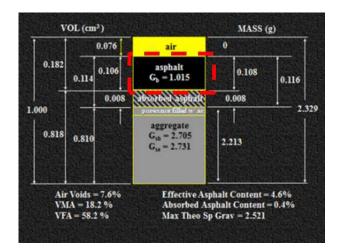
Balanced Mix Design Task Force Update of Activities


ASPHALT MIXTURE EXPERT TASK GROUP (ETG) MEETING SALT LAKE CITY, UTAH APRIL 2016

Task Force Development History

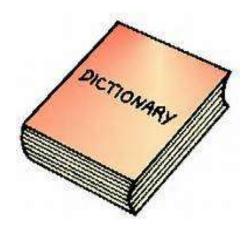
- Concern nationally that dense graded mixes are experiencing early age durability related performance issues.
 - Lots of opinions on possible causes
 - Probably a combination of many factors
- Many states have started the process of "performance testing" during mix design and/or production to help ensure mix performance.
 - Process of utilizing performance testing during design has been referred to as a balanced mix design approach.
- Balanced Mix Design Task Force formed at the September 2015 ETG meeting in Oklahoma City


Task Force Membership


Name <	Last 🗾 👻	First 🔹 💌	Affilation	Category 🗾	e-mail 🔹	
Chris Abadie	Abadie	Chris	Pine Bluff S&G	Industry	abadie3522@icloud.com	
Tim Aschenbrener	Aschenbrener	Tim	FHWA - Denver FHWA Agency		timothy.aschenbrener@dot.gov	
Shane Buchanan	Buchanan	Shane	Oldcastle Materials	Industry	sbuchanan@oldcastlematerials.com	
Erv Dukatz	Dukatz	Erv	Mathy Construction	Industry	Ervin.Dukatz@mathy.com	
Lee Gallivan	Gallivan	Lee	Consultant	Consultant	lee@gallivanconsultinginc.com	
Kevin Hall	Hall	Kevin	University of Arkansas	Academia/Research	kdhall@uark.edu	
Andrew Hanz	Hanz	Andrew	Mathy Construction	Industry	Andrew.Hanz@mteservices.com	
Gerry Huber	Huber	Gerry	Heritage Research	Research Industry <u>Gerald.huber@hrglab.co</u>		
Anne Holt	Holt	Anne	Ontario Ministry of Transportation	Provincial Agency	Anne.Holt@ontario.ca	
Louay Mohammad	Mohammad	Louay	Louisiana State University Academia/Research Louaym@Lsu.e		Louaym@Lsu.edu	
Dave Newcomb	Newcomb	Dave	Texas Transportation Institute	as Transportation Institute Academia/Research <u>d-newcomb@ttimail.</u>		
Randy West	West	Randy	NCAT	Research	westran@auburn.edu	

Task Force Goals and Focus Areas

- Define Balanced Mix Design
- Determine the current "state of practice" of BMD and performance testing
 - Mix design
 - Field acceptance
- Recommend approaches/concepts for immediate use
- Recommend future needs (potential research) to advance BMD approaches
- Effective dissemination of material



BMD Task Force Work Items

Work Item	Lead(s)
Definition of Balanced Mix Design	All
Laboratory Balanced Mix Design Guidance / Flowcharts	Hall / Mohammad
Field Acceptance Guidance / Protocols	Aschenbrener / Mohammad
Agency State of Practice (Survey of Current BMD Work/Approaches	Chris Abadie / Mohammad

Balanced Mix Design Definition

Balanced Mix Design Definition

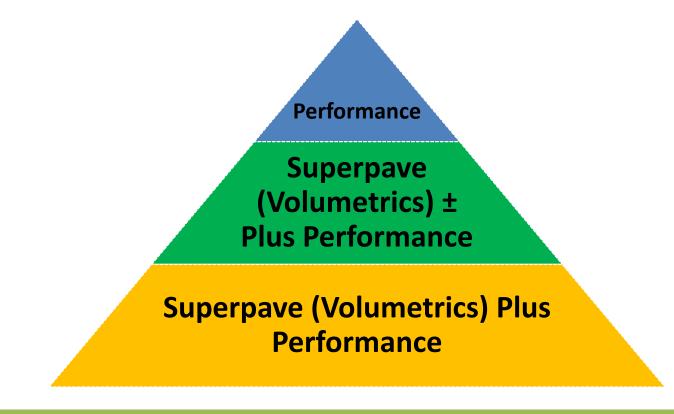
- "Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure."
- □ The reasons for using the balanced mix design approach include the following:
 - Evaluating the quality of a mix design relative to anticipated performance using a rational approach
 - Designing mixtures for performance rather than only a volumetric mix design
 - Addressing performance issues that may exist in some areas
 - Cracking from low asphalt binder content
 - Rutting from low fine aggregate angularity, low N-design, low in-place density specifications, etc.
 - Addressing increased binder replacement from use of recycled materials
 - Evaluating mix additive(s) effects which are not directly considered within only a volumetric mix design

Performance Tests

Performance Tests

Performance Tests

- All tests related to performance other than those used for volumetric mix design
 - Examples: Hamburg wheel-track testing, Asphalt Pavement Analyzer, dynamic modulus, beam fatigue, semi-circular bend (SCB), others


Decision made NOT to distinguish between mechanistic/empirical tests

Randy West ...

"Let's not get bogged down in mechanistic versus empirical semantics. The two most important things are that (1) the test parameter relates to performance, and (2) the test can be implemented for routine use in <u>mix design."</u>

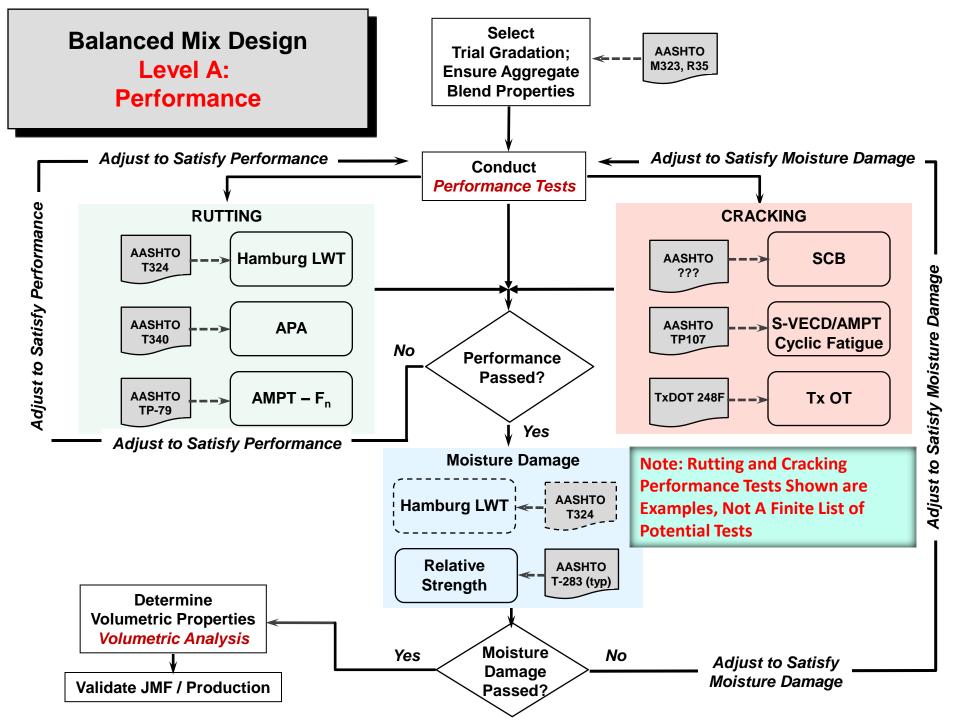
Hierarchy of Mix Designs

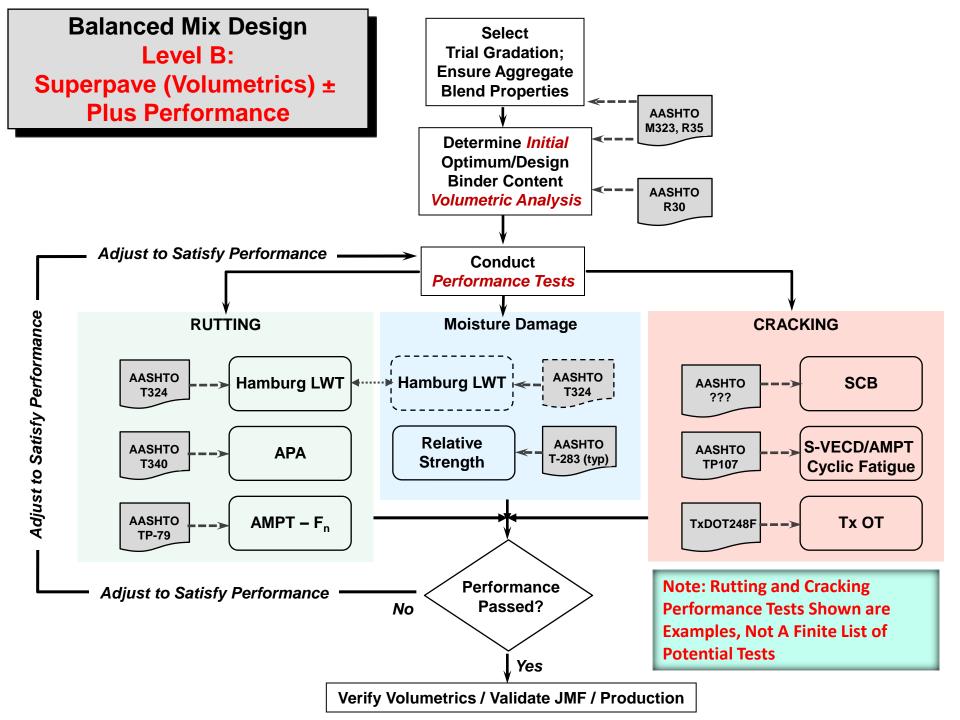
Oldcastle

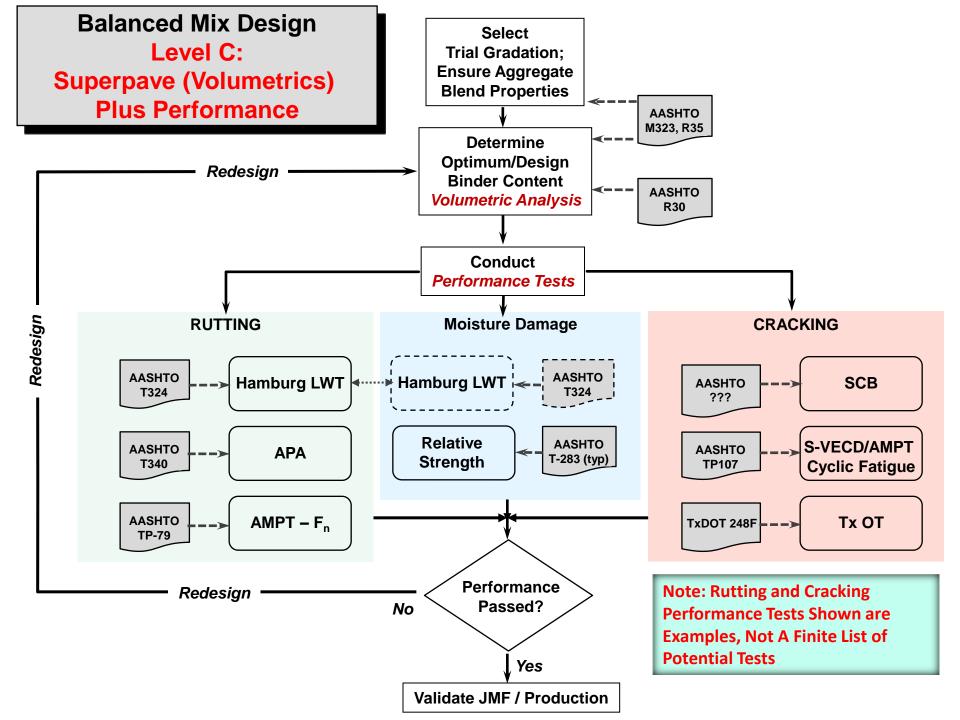
Materials

Hierarchy of Mix Designs

- Level A: Mix design to meet performance predictions requirements with measureable performance properties.
 - **Performance**
- Level B: Mix design to meet requirements of performance tests that address rutting, cracking or other performance criteria as the governing principle of the design with <u>allowable adjustments to volumetric criteria in AASHTO M323.</u>
 - Superpave (Volumetrics) ± Plus Performance
 - □ ± indicates "allowable adjustments"
- Level C: Mix design according to AASHTO M323 that governs the design, plus the addition of performance tests to address rutting, cracking or other performance criteria.




Superpave (Volumetrics) Plus Performance


Balanced Mix Design Approach and Development

Job Mix Formula (JMF) Development During Balanced Mix Design

JMF

Balanced Mix Design: Comparison of Volumetric and Balanced Mix Designs January 19, 2016 Tim Aschenbrener

JMF Development

Case Histories of Setting the Job Mix Formula with a Balanced Mix Design Compared to a Volumetric Mix Design

	State	Aggregate	Aggregate	Binder	Binder	Notes on	Observed
		Properties	Gradation	Grade	Quantity	Aging	Mix Design Adjustments
	Illinois Building 8 projects this year	Same FAA education	Same	Same	Same Superpave	STA – Hamburg LTA – I-FIT	RAP and RAS quantities Binder source change Construction: silo time, aggregate moisture, plant temperatures
e ance	Texas All specialty mixes for 2- 3 years	Same	Same	Same	Same Superpave	STA - Hamburg LTA - Overlay Tester	Asphalt content Binder source change Gradation adjustment for fines (P200) Aggregate source changes
Model A Superpave plus Performance	Wisconsin 4 projects last year	Same	Same	Same	Waive VFA Superpave	STA – Hamburg LTA – DCT and SCB	Binder source and additives Aggregate gradation and fines Rubber
plu	Louisiana	Same	Same	Same	Same	STA – Hamburg LTA – SCB	
	New Jersey All specialty mixes - 5-10% of statewide tonnage	Same	Same	Open	Same	STA - APA LTA – Beam Fatigue and Overlay Tester	WMA Rejuvenators Polymers Changing effective asphalt content
Model B Superpave ± plus Perf.	California 7 Interstate projects to date.	Same - Min. is starting point; usually have to exceed these	Same	Same	Same - May go outside tolerances pending perf. test results Hveem and Superpave	STA – Repeated Shear and Hamburg LTA – Beam fatigue & freq. sweep	Binder source / Aggregate source Binder content Dust : Asphalt ratio Currently developing mix guidance steps (easy and least costly to more difficult and costly) – Report will be available in April.
Model C Performance	New Jersey Proposed	Same	Same	Open	Optimum AC determined between lowest and highest asphalt contents from performance tests. A field production tolerance is set at ±0.3% on the optimum.	STA - APA LTA - Beam Fatigue and Overlay Tester	To be determined

Current Practices for Field Acceptance

Field Acceptance Guidelines with BMD

Document provides background, important considerations, and case studies from states currently utilized BMD approaches.

Field Acceptance

Balanced Mix Design Field Acceptance Guidelines January 19, 2016 Tim Aschenbrener

Background:

• After completing a balanced mix design, there is a desire to build a project using this mix design. The purpose of this document is to provide guidance regarding field acceptance of this mix.

Field Acceptance Case Studies

		N
-		5
	-	-
W		-
100		-
	-	_

Field Acceptance

	State	Mix Design	Acceptance	Initial	Ongoing	Information	Notes on
		-	Quality	Verification	Go/	Only	Aging for
			Characteristics	Go / No Go	No Go		Cracking
							Test
	California	Volumetric	AC/VTM/VMA			Beam	
		Beam	Field Density			fatigue and	
.u		fatigue				frequency	
etri 1		and				sweep	
Model 1 Volumetric		frequency				Repeated	
N IO		sweep				Shear	
_		Repeated				Hamburg	
		Shear					
		Hamburg					
્ય	Texas	Volumetric	VTM	Overlay	AC/VMA		STA only
and		Overlay	Field Density	Tester	Overlay		
Ĕ		Tester		Hamburg	Tester		
Model 2 Volumetric plus Performance		Hamburg			Hamburg		
Model 2 plus Per	Wisconsin	Volumetric	VTM	DC(t)	***DC(t)	SCB	Researching
polosi		SCB, DC(t)	Field Density	Hamburg	Hamburg		2 types of
l ⊠ ig		Hamburg					LTA
letr	Illinois	Volumetric	AC/VTM/VMA	IL-SCB*	**IL-SCB	DC(t)	Researching
L L		IL-SCB*	Field Density	Hamburg	Hamburg		different
		Hamburg					types of
							LTA
	New	Volumetric	Field Density	APA	****APA		None
	Jersey	APA		Beam	Beam		
uce 3		Beam		Fatigue	Fatigue		
Model 3 rforman		Fatigue		Overlay	Overlay		
for		Overlay		Tester	Tester		
Model 3 Performance		Tester	51 L D				D
_	Louisiana	Volumetric	Field Density	SCB	****SCB		Researching
		SCB		Hamburg	Hamburg		2 types of
		Hamburg			AC/Grad.		LTA

*IL-SCB is now called the Illinois Flexibility Index Test (I-FIT).

Ongoing Go / No Go - **Frequency at engineer's discretion

***Required frequency- engineer's judgement on addressing test results

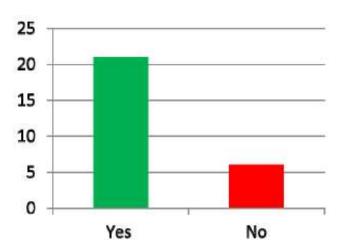
****Required frequency - required results

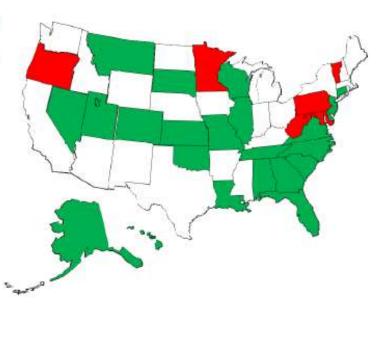
State of Practice

State of Balanced Mix Design Practice

 Survey Responses received from ~27 states.

Results of Balance Mix Design Questionnaire

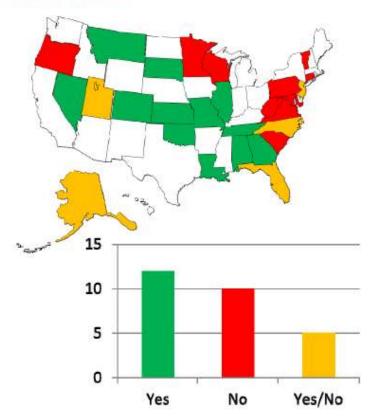

Louay Mohammad February 11, 2016



State of Balanced Mix Design Practice - Example

Are performance tests used in your current mix design specifications?

- 21 state DOTs reported that they do
- 6 states DOTs reported that they do not



State of Balanced Mix Design Practice - Example

If yes, are the same performance tests used to evaluate mix during production?

- 12 state DOTs reported that they do use the same performance tests to evaluate mix during production.
- 10 states reported that they do not use the same performance tests to evaluate mix during production.
- 5 states reported that they <u>do and do not</u> use the same performance tests to evaluate mix during production. They only use it if specific issues arise but not every time.

Observations

Widespread confusion exists

- Varying thoughts/ideas...
 - □ What is balanced mix design?
 - □ What is performance testing in general?
 - □ What performance test to use?
 - □ What performance thresholds to use?
- Current mix design procedures/ requirements vary considerably among DOTs
 - Highlights the critical need to move forward with a balanced design approach

CONFUSION + CHAOS

Path Forward

Next Steps – Proposed Work Item

- 1. Prepare White Paper
 - Document current state of practice and task force work
 - Definition
 - Mix design hierarchy
 - BMD approaches (lab and field acceptance)
 - Agency survey results
 - Pertinent literature on BMD and performance testing
 - Note:
 - □ AFK10 (Frank Fee lead) preparing an E-Circular document
 - "Innovations in Asphalt Mix Design Procedures Workshop", 95th TRB Annual Meeting (2016)
 - Collaborate to ensure consistency, reduce redundancy, and maintain unified message to aid in implementation

_	Г

Next Steps – Proposed Work Item

- 2. Identify issues and deficiencies in current knowledge base and prepare future Research Needs Statement(s) (RNS)
 - BMD implementation considerations
 - □ Repeatability / Reproducibility of performance tests
 - Use of test for acceptance/payment
 - Testing time
 - Test simplicity and sensitivity
 - □ Lab/field correlation
 - □ Integration of balanced mix design approaches with structural pavement design
 - Consideration items
 - Climate
 - Pavement structure
 - □ Traffic

BMD – Questions to Be Answered

Mix Design:

- How is optimum binder content selected?
- Field Adjustments:
 - What tolerances are allowed?

- □ When is a complete mix design re-evaluation required?
- Can the producer modify the aggregate sources, RAP, RAS, dust to asphalt ratio, etc. in any amount as long as it passes the established test value(s) during production?

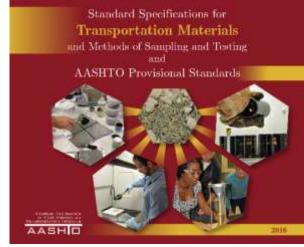
□ Field Acceptance:

- What are the quality characteristics and tolerances?
- Is volumetric testing an adequate surrogate? If not, what?
- □ How will field density requirements be established and enforced?

From: Tim Aschenbrener

BMD – Considerations for Implementation

- Performance tests...
 - Simplified monotonic loaded single temperature (empirical test)
 - National standard test methods with equipment requirements
 - Aging: long-term vs. short-term
 - Ruggedness testing
 - Precision and bias
 - Sensitivity analysis
 - Acceptance criteria
 - Correlation (Pass / Fail) to actual pavement performance



From: Tim Aschenbrener

Next Steps – Proposed Work Item

- 3. Begin development of draft AASHTO standard
 - Recommended Practice for Balanced Mix Design
 - Present the alternate approaches for BMD
 - User decision based on needs/capabilities
 - Provide links (reference) to the standard test methods for various performance tests

Next Steps – Proposed Work Item

- 4. Develop an information clearinghouse webpage for BMD
 - Similar to <u>www.warmmixasphalt.com</u>
 - Determine responsible parties to host, populate, and maintain site

Thoughts and Questions?

